Regularizing graph centrality computations
نویسندگان
چکیده
منابع مشابه
Regularizing graph centrality computations
Centrality metrics such as betweenness and closeness have been used to identify important nodes in a network. However, it takes days to months on a high-end workstation to compute the centrality of today’s networks. The main reasons are the size and the irregular structure of these networks. While today’s computing units excel at processing dense and regular data, their performance is questiona...
متن کاملOptimization Techniques for Multiple Centrality Computations
A broad range of data has a graph structure, such as the Web link structure, online social networks, or online communities whose members rate each other (reputation systems) or rate items (recommender systems). In these contexts, a common task is to identify important vertices in the graph, e.g., influential users in a social network or trustworthy users in a reputation system, by means of cent...
متن کاملSparse matrix computations for dynamic network centrality
*Correspondence: [email protected] University of Strathclyde, 16 Richmond St, G1 1XQ Glasgow, UK Abstract Time sliced networks describing human-human digital interactions are typically large and sparse. This is the case, for example, with pairwise connectivity describing social media, voice call or physical proximity, when measured over seconds, minutes or hours. However, if we wish...
متن کاملGraph partitioning for scalable distributed graph computations
Inter-node communication time constitutes a significant fraction of the execution time of graph algorithms on distributed-memory systems. Global computations on large-scale sparse graphs with skewed degree distributions are particularly challenging to optimize for, as prior work shows that it is difficult to obtain balanced partitions with low edge cuts for these graphs. In this work, we attemp...
متن کاملA Graph Manipulations for Fast Centrality Computation
The betweenness and closeness metrics are widely used metrics in many network analysis applications. Yet, they are expensive to compute. For that reason, making the betweenness and closeness centrality computations faster is an important and well-studied problem. In this work, we propose the framework BADIOS which manipulates the graph by compressing it and splitting into pieces so that the cen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Parallel and Distributed Computing
سال: 2015
ISSN: 0743-7315
DOI: 10.1016/j.jpdc.2014.07.006